
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  2 0  ( 1 9 8 5 )  2 1 2 8 - 2 1 3 2  

Connection between stress state and 
plastic strain increments determined by a 
computer  method 
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The ratios of the plastic shear strain and tensile strain to the resolved shear strain are 
determined on the basis of earlier results obtained by computer for (1 0 0 )  and ( 1 1 1 ) 
textures and nontextured polycrystals in the case of simultaneous shear and extension. 
It is shown that the plastic deformation increment vector determined by the application 
of the plastic work equation fulfils the normality condition prescribed by the generalized 
f low law. 

1. Introduction 
It is known that the convexity of  the yield surface 
is required by the Drucker's deformation stability 
condition [1]. On the basis of  the generalized flow 
law the increment, de}} of  the plastic deformation 
vector is perpendicular to the yield surface that 
is [21: 

= dX o f  (1) 
3o~j 

where f is the yield function and dX is a factor 
depending on the stress state and the deformation. 

In previous papers the yield function of  tex- 
tured and nontextured polycrystals have been 
determined for the stress state of  simultaneous 
shear and extension [3, 4]. The yield functions 
obtained obey the condition of  convexity. In the 
present paper the validity of  the normality con- 
dition is studied and the connections between 
shear strains, tensile strains and the resolved 
shear strain are determined. 

2. Calculation of the yield function by the 
computer method 

In this section the results of  our yield function 
calculations are summarized [3, 4]. 

By the method applied the shear stresses of the 
possible 12 slip systems were determined in all 
the grains of  the polycrystal and the arithmetical 
mean of the five largest shear stresses was cal- 
culated. The condition of plastic flow was regarded 

to be fulfilled when the arithmetical mean of these 
shear stresses of the individual grains attained the 
value of the critical shear stress, r r  e. The validity of  
this averaging method can be explained by the 
development of  internal stresses in the course 
of  plastic deformation [4]. The calculations were 
made for the stress state of simultaneous shear 
and extension. The numerical quantity r~/r was 
determined as a function of o/r, where o is the 
tensile stress and ~- is the shear stress applied. 

The yield function of  three kinds of  poly- 
crystalline materials of  the (1 0 0) and (1 1 1 ) 
textured and of the nontextured one was deter- 
mined. As an example Fig. 1 shows the r~/Z--e/r 
curve for randomly oriented polycrystalline 
material. This curve can be approached by a 
hyperbola with eccentricity e = 3.142, nearly equal 
to lr. The minor and major axes indicated on 
Fig. 1 are a = 0.6154, b = 1.833. By these par- 
ameters the computed function can be well 
approximated by the expression: 

CJT ~ a2 + ~ )  (2) 

From this expr~ ~sion the critical shear stress is: 

2=[ ~ r~ r 2 + (3) 

If o = 0, then from this expression the yield stress 
of  pure shear is r~ = r~/a, which gives the Taylor 
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C Figure l The quantity rr/r as a function of (x/r determined by computer for nontextured polycrystals. (The computed 
points are denoted by crosses.) The continuous line is a hyperbola. 

factor of  pure shear M r = 1/a = 1.625. Similarly, 
in the case of  7 = 0 the yield stress of  pure exten- 
sion is af = b.re/a, which gives the Taylor factor 
of  pure extension to be Mo = b/a = 2.978. By 
these Taylor factors the connection between the 
yield stress of pure shear and of  pure extension 
can be obtained: 

of = 1.833 r~ (4) 

These values  are in good agreement with the 
results known in the literature and obtained in 
other ways [5 -7 ] .  

On the basis of  Equation 3 the yield function 
is: 

(/2 

The condit ion of plastic flow is f =  0. On the basis 
of  this condit ion the connection between the vari- 
ables o and z can be characterized by such an 
ellipse which placed between the curves obtained 
from the yield functions due to the yon Mises and 
Tresca criterions (Fig. 2). It is worth mentioning 
that in the cases of  the Mises condit ion a = 1/31/2, 
b = 31/2. 

The yield functions of  ( 1 0 0 )  and (1 1 1) 
textured polycrystals cannot be characterized by 
ellipses (Figs. 3 and 4). The yield function is 
linear, if  o / r >  2 and o/r  > 5.64 for the (1 0 0 )  
and (1 1 1 ) texture, respectively. 

For  the (1 0 0 )  texture [3]: 

Of 
- 1.054 Me = 2.45 

-/-f 

In the case of  the (1 1 1 ) texture:  

Of 
- 2.558 M o = 3.674 

Tf 

M r = 2.33 

M r = 1.436 

3. Discussion 
To investigate the normali ty  condition given by 
Equation 1 the plastic tensile and shear deformation 
increments de, d7 belonging to a given stress state 
must be calculated. To determine these quantities 
let us start from the equality of  plastic works: 

7~d% = o d e +  rd7  (6) 

LO co locus 

_ _  OJ 0.5 1,0 1.5 ZO a /T f  

Figure 2 The computed yield function of nontextured 
polycrystals and the yield functions obtained by the 
Mises and Tresca criterions for the case of simultaneous 
shear and extension. 
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Figure 3 The normalized yield function of the (1 0 0 ) 
texture. Arrows denote the direction of plastic defor- 
mation increment vectors belonging to the corresponding 
stress states. The yield function is linear for the stress 
state air > 2. 

where d% is the resolved shear strain. With a little 
change we get: 

C rr  o de d7 
- + - -  (7) 

r r dTr d% 

It can be seen from this equation that for a given 
stress state (o, r) the deformation increment ratios 
de/d% and dT/dTr are equal to the slope and to 
the intersection of  the tangent drawn to the 
r ~ / r - o / r  curve, respectively (Fig. 1). On the 
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Figure4  The normalized yield function of the (1 1 1) 
texture. Arrows denote the direction of plastic defor- 
mation increment vectors belonging to the corresponding 
stress states. The yield function is linear for the stress 
state a/r > 5.64. 

basis of this interpretation by applying Equation 2 
we get the following connections: 

de a 
- o ( 8 a )  

dTr b 2 rf 

d7 a 
- r ( 8 b )  

d% r~ 

These equations show that the ratios of  the 
deformation increments are proportional to the 
corresponding stress. From the connections 
(Equations 8a and 8b) the ratio of  the plastic 
tensile and plastic shear strains is 

de (7 
d7 b 2 r (9) 

If we apply the generalized flow law for the yield 
function given by Equation 4 then we again arrive 
at Equation 9. This means, that the plastic defor- 
mation increment vector (dT, de) is perpendicular 
to the yield surface if the corresponding axes of  
the stress and strain increment coordinate systems 
are parallel to each other. Therefore the plastic 
deformation increment vector obtained by applying 
Equation 6 fulfils the normality condition pre- 
scribed by Equation 1. 

It can be shown in a simple way that the defor- 
mation increments derived from the generalized 
flow law are equivalent in general to the ones 
derived from the plastic work equation, if the 
critical resolved shear stress can be written in the 
form 

o (o) (10) T r = T g  

Using the connection r~ = M t r c the yield function 
in this case is 

(11) 

In the case of  simultaneous shear and extension 
the critical resolved shear stress can always be 
given in the form of  Expression 10 [3], therefore 
the flow law is always fulfilled automatically for 
this case. 

The validity of this statement can be seen well 
in the case of  the ( 1 0 0 )  and ( 1 1 1 }  textured 
materials too. In Figs. 3 and 4 the vectors drawn 
to the contour of the yield surface show the plastic 
deformation increment vectors normal to the 
yield surface. The vectors were determined graphi- 
cally by the tangents drawn to the corresponding 
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Figure 5 The deformation ratios of nontextured poly- 
crystals as a function of stress state. 

z~/'r-a/r curve on the basis of  Equation 7. The 
characteristics of  these two textures is that along 
the plane part of  the yield surface (along the linear 
part of  the contour) all the three deformation 
increment ratios de/d3', de/d% and dT/d% are 
constants. These ratios and the yield functions for 
the three kinds of  polycrystalline materials can 
be seen in Figs. 5 to 7. From these figures the 
ratios of  the tensile and shear strains to the resolved 
shear strain can be obtained for any stress state. 
These ratios for the stress states o = 0 and ~- = 0 
give the reciprocal values of  the Taylor factor for 
pure shear and for pure extension, respectively. 

For nontextured materials in the combined 
stress state the Taylor factors of  pure shear and 
pure extension characterize connections between 
an effective tensile or shear strain and the resolved 
shear strain. Such a connection can be obtained 
using Equations 2 and 8: 

{ del2 11 dTl 21 ',2 a (12) 
\d3%] + g l ~  / j = b 

where b = Me/M r and a/b = 1/M~. It is clear that 

d~ 
,3 ,2 l I 

d! 
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Figure 6 The deformation ratios of the (100) texture 
as a function of stress state. 
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Figure 7 The deformation ratios of the (111 ) texture 
as a function of stress state. 

from this equation an equivalent tensile strain de 
can be defined by 

d-e = de 2 + d72 

On the basis of  Equation 12 an equivalence 
relation between the pure shear strain (when 
de = 0) and pure tensile strain (when d7 = 0) can 
also be obtained if d% is the same in the two 
cases. This relation is d3'p = depb, that is dep pure 
tensile deformation is equivalent to dTp/b pure 
shear strain, or dTp pure shear strain is equivalent 
to dTp/b pure temile strain. 

According to Expression 12 the connection 
between the relative shear and tensile deformation 
increments can be characterized by a circle with 
unit radius. Its equation is: 

1 d712 + ( b  d e l 2  
d- j) = 1 (13) 

Similarly, the connection between the shear and 
tensile stresses for plastic yielding can be obtained 
from Equation 3 as: 

+ = 1 (14) 

Representing these two circles in the same 
coordinate system two parallel unit vectors can 
be defined from which the first one 

= [1- ,  ~-~--1 (15) na ~Tf br,] 

characterizes the stress state, and the second one 

ne = , (16) 
a d% a 

characterizes the corresponding deformation 
increments (Fig. 8). 
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Figure 8 Connection characterizes the~ stress state and 
the deformation increments. 

It is clear, that both of  them are normal to the 
yield surface. The scalar product of  these two 
vectors gives a relation for the plastic work, 
because 

1 r do` 1 o d e  
n a n  e = F = 1 

a r~ do`r a rf dTr 

which is just Equation 6 with art = r~. 
On the basis of  Equation 13 the total resolved 

shear strain is 

= a \do'] (17) 

The quantity de/do' can be well measured, for 
example, in simultaneous torsion and extension 
experiments so the quantity do'r can be deter- 
mined. If  we suppose that no change in the orien- 
tation distribution of the grains takes place for a 

finite deformation then we obtain: 

7r = l I ~  [l+b2(de~21'/2 
\d-~7) ] do' 

Measuring the quantity r~ as a function of defor- 
mation and using ~-~ and o`r a single r~-o`r curve 
can be constructed to characterize the work 
hardening in the course of  simultaneous torsion 
and extension. 

4. Conclusions 
Using the principle of  plastic w o r k  connections 
between the shear and tensile strains and resolved 
shear strains are given for ( 1 0 0)  and (1 1 1 ) 
textured and for nontextured polycrystals in the 
case of  simultaneous shear and extension. 

The application of  the plastic work equation 
leads to deformation increments which fulfil the 
normality condition prescribed by the generalized 
flow law. The stress state and the deformation 
increments can be characterized by parallel vectors. 
In the case of  simultaneous shear and extension 
the work hardening can be characterized by a 
single curve. 
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